Recitation 8

October 15, 2015

Problems

Problem 1. Since $det(A - 4I) = det \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} = 0$, $\lambda_1 = 4$ is an eigenvalue. Since det A = 0, $\lambda_2 = 0$ is another eigenvalue.

Problem 2. The determinant is $(-1)^{3+1} \cdot (-1) \cdot \begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} = -(-1 - 2 \cdot 2) = 5.$

Problem 3. As above, we have det $A = (-1)^{2+1} \cdot (-1) \begin{vmatrix} 3 & 1 \\ 0 & 3 \end{vmatrix} + (-1)^{3+1} \begin{vmatrix} 3 & 1 \\ 2 & -2 \end{vmatrix} = 9 - 8 = 1.$ Using row reduction, we get

0	3	1]		0	3	1]		0	0	-1/2
-1	2	-2	\Rightarrow	0	2	1	\Rightarrow	0	2	1
1	0	3		1	0	3		1	0	3

So the determinant is

0	0	-1/2		1	0	3	
0	2	1	= -	0	2	1	= 1
1	0	3		0	0	-1/2	

Problem 4. Carefully row reduce. The answer should be 9 (if I myself row reduced this matrix carefully enough).

Problem 5. If A is invertible, then $A \cdot A^{-1} = I$. So $1 = \det I = \det(A \cdot A^{-1}) = \det A \det A^{-1}$. Thus $\det A^{-1} = \frac{1}{\det A}$.

Problem 6. Since det(2I) = 8, we get

$$\det(2A^{-2}B^T A^{-1}B^2 A^T) = 8 \cdot \frac{1}{\det(A)^2} \cdot \det(B) \cdot \frac{1}{\det A} \cdot \det(B)^2 \cdot \det(A) = -2$$

Problem 7. The characteristic equation is $det(A - \lambda I) = 0$, which is $\lambda^2 - 7\lambda + 6 = 0$. Thus $\lambda_1 = 1$ and $\lambda_2 = 6$ are the two eigenvalues.

For $\lambda_1 = 1$, $A - I = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$. Thus eigenvectors are of the form $x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. For $\lambda_2 = 6$ we get $A - 6I = \begin{bmatrix} -3 & 2 \\ 3 & -2 \end{bmatrix}$. Thus eigenvectors are of the form $x_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Eigenvectors corresponding to distinct eigenvalues are linearly independent, so we can pick a basis of \mathbb{R}^2 consisting of eigenvectors. For example, $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ for a basis.

Problem 8. The characteristic equation is $\lambda^2 - 6\lambda + 9 = 0$. It has unique solution $\lambda = 3$. Since $A - 3I = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}$, its null space is spanned by the vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and so all eigenvectors are non-zero multiples of v. So in this case we can't find a basis consisting of eigenvectors. **Problem 9.** Compute det $(A - \lambda I)$. We get

$$\begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ 1 & -\lambda \end{vmatrix} + \begin{vmatrix} -1 & -\lambda \\ 1 & 1 \end{vmatrix} = -\lambda^3 + \lambda$$

Thus the characteristic equation is $\lambda^3 - \lambda = 0$, and it has solutions $\lambda = 0, \pm 1$.

Problem 10. det $(A - \lambda I) = \lambda^2 - (a + d)\lambda + (ad - bc)$. So the constant coefficient is just det A, and the coefficient of λ is minus the sum of the diagonal elements.

Problem 11. The constant coefficient of $det(A - \lambda I)$ is just det(A). The coefficient of λ^2 will be the sum of the diagonal elements.